Monday, February 18, 2019

BacterioFiles 374 - Microbes Muzzle Malicious Metal

Elemental arsenic
By Tomihahndorf
CC BY-SA 3.0
This episode: Mouse gut microbes, from mice or from human donors, can protect mice against arsenic toxicity!

Download Episode (6.3 MB, 6.9 minutes)

Show notes:
Microbe of the episode: Streptomyces griseus

News item

Takeaways
Our gut microbes benefit us in many ways, including nutritionally—by producing vitamins and helping to digest food—and by helping us in defense against pathogens and other immunological threats.

Many things we do can affect our gut microbes too, positively or negatively. What we eat, toxins we encounter, and other aspects of lifestyle can damage our microbial communities.

In this study, we see that the reverse could be true, that gut microbes, and specifically one called Faecalibacterium prausnitzii, can protect their host against toxins such as arsenic.

Journal Paper:
Coryell M, McAlpine M, Pinkham NV, McDermott TR, Walk ST. 2018. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat Commun 9:5424.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, RSS, Google Play. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, February 11, 2019

BacterioFiles 373 - Plant Pilots Prevent Parching

Emmer wheat
This episode: Beneficial fungi found inside wild grain plants help wheat plants grow better with less water!

Download Episode (7.1 MB, 7.75 minutes)

Show notes:
Microbe of the episode: Beijerinckia indica

Takeaways
As we have microbial communities in our guts, on our skin, and in various other places in and on our bodies, plants also have beneficial microbial symbionts around their roots, on their leaf surfaces, and even inside their tissues. These microbes can be bacteria, fungi, or other, and can help plants gather nutrients, resist diseases or pests, and other things.

In this study, some fungi living in grain plants—called endophytes, or "inside plants"—can help wheat tolerate drought and grow better with less water. Studying this system could lead to breakthroughs in wheat farming, all thanks to microbes.

Journal Paper:
Llorens E, Sharon O, Camañes G, García‐Agustín P, Sharon A. Endophytes from wild cereals protect wheat plants from drought by alteration of physiological responses of the plants to water stress. Environ Microbiol.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, RSS, Google Play. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, February 4, 2019

BacterioFiles 372 - Roundworm Riders Repel Raiders

Nematode
By Bob Goldstein, UNC Chapel Hill
CC BY-SA 3.0
This episode: Bacteria that help nematodes prey on insects also help keep fungi from stealing their kills!

Download Episode (7.4 MB, 8.1 minutes)

Show notes:
Microbe of the episode: Artogeia rapae granulovirus

Takeaways
Soil is an incredibly complex ecosystem, with many different interactions constantly happening between plants, insects, bacteria, fungi, and other organisms, not to mention a large variety of shifting environmental conditions. All of these are competing with some and cooperating with others to try to survive and thrive the best they can.

One interesting interaction takes place between small roundworms in the soil, called nematodes, and bacteria they carry around that cause disease in insects. These nematodes prey on insects by injecting the bacteria into them, which kill and start digesting the insects. The nematodes then feed on the insects and the bacteria until the resources have been exhausted, and then move on to the next insect, taking some bacteria with them again.

In this study, the scientists wondered how these partners deal with competitors in the soil that might want to take advantage of their resources. They discover that the bacteria produce compounds that can repel and inhibit fungi that might otherwise steal their kills.

Journal Paper:
Shan S, Wang W, Song C, Wang M, Sun B, Li Y, Fu Y, Gu X, Ruan W, Rasmann S. The symbiotic bacteria Alcaligenes faecalis of the entomopathogenic nematodes Oscheius spp. exhibit potential biocontrol of plant- and entomopathogenic fungi. Microb Biotechnol.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, RSS, Google Play. Support the show at Patreon, or check out the show at Twitter or Facebook.