Monday, February 17, 2020

BacterioFiles 414 - Producing Proton Power Perpetually

Microalgae Chlamydomonas reinhardtii
This episode: Microalgae can produce hydrogen, but other metabolic pathways take priority, except when special engineered hydrogenase enzymes can overcome this limitation!


Download Episode (8.4 MB, 12.2 minutes)

Show notes:
Microbe of the episode: Alphapapillomavirus 11

Takeaways
There are many options being explored as ways to replace fossil fuels. Electricity and batteries are good, but they have their limitations, especially for long-distance high-energy travel such as airplanes. Hydrogen is one good option: high energy density, clean-burning, simple to produce. Microbes can produce hydrogen through various metabolic pathways, including fermentation, nitrogen fixation byproduct, and photosynthesis. However, competing metabolic pathways make microbial hydrogen production less efficient.

In this study, scientists engineer a hydrogenase enzyme for hydrogen production in microalgae that can compete better with carbon fixation as a destination for the electrons and protons that hydrogen production requires. This engineered enzyme allowed the algae to produce hydrogen continuously, even during photosynthesis.

Journal Paper:
Ben-Zvi O, Dafni E, Feldman Y, Yacoby I. 2019. Re-routing photosynthetic energy for continuous hydrogen production in vivo. Biotechnol Biofuels 12:266.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, February 10, 2020

BacterioFiles 413 - Finding Fire Fungi Footholds

Pyrophilous fungus
Pholiota highlandensis
This episode: Some fungi only form fruiting bodies after forest fires; where do they hide the rest of the time? At least for some of them, the answer is: inside mosses!

Thanks to Daniel Raudabaugh for his contribution!

Download Episode (6.2 MB, 9.0 minutes)

Show notes:
Microbe of the episode: Nocardia brevicatena

News item

Takeaways
Forest fires can do a lot of damage, but life grows back quickly. Certain kinds of plant seed actually only germinate after a fire, and a similar thing is true of certain kinds of fungi: they only form fruiting bodies (like mushrooms, for spreading spores) after a fire. For plants, the advantage may come from increased access to light with some or all of the canopy burned away, and fungi may benefit from less competition on the ground. But in between burn events, these fire-loving (pyrophilous) fungi seem to disappear. Where do they go?

The study here sought an answer, suspecting an association with some mosses that reappeared soon after a forest fire in North Carolina in 2016. They looked for fungi lurking as endophytes inside moss and other samples, both by growing them on agar and by DNA sequencing, and they found a number of different known pyrophilous fungi. Some of these were in soil, or samples from outside the burned area, but the majority were inside mosses growing in the recently burned zone.

Journal Paper:
Raudabaugh DB, Matheny PB, Hughes KW, Iturriaga T, Sargent M, Miller AN. 2020. Where are they hiding? Testing the body snatchers hypothesis in pyrophilous fungi. Fungal Ecol 43:100870.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, February 3, 2020

BacterioFiles 412 - Carbon Concentration Complicates Crop Cooperation

Wheat plants
By Bluemoose, CC BY-SA 3.0
This episode: Looking at the effects of almost doubling CO2 concentrations on the interaction between wheat varieties and beneficial fungi!

Download Episode (8.1 MB, 11.8 minutes)

Show notes:
Microbe of the episode: Lato River virus

News item

Takeaways
As the world's population grows, feeding everyone will grow more challenging. Advances in technology in the past have made today's population possible, but future advances may be needed, especially in the face of an increasing concentration of carbon dioxide in the atmosphere.

Soil microbes that partner with crop plants for the benefit of each may be part of the solution. One option to explore is a group called mycorrhizal fungi, which associate with plant roots to extend their nutrient-gathering ability, in exchange for carbon compounds produced by photosynthesis. This study examined the influence of increased carbon dioxide in the atmosphere on the interaction of several varieties of wheat with these fungi.

Journal Paper:
Thirkell TJ, Pastok D, Field KJ. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob Change Biol.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, January 27, 2020

BacterioFiles 411 - Parasite Produces Partial Plant-like Predator

A choanoflagellate
By Daniel Stoupin
CC BY-SA 3.0
This episode: Giant virus in newly discovered microscopic marine predator encodes several light-harvesting proteins!

Download Episode (7.8 MB, 11.4 minutes)

Show notes:
Microbe of the episode: Dolphin mastadenovirus A

News item

Takeaways
Giant viruses are distinct in many ways from other viruses, even aside from their size. One way is the large number and variety of genes they carry in their genome. Though many of their genes are unknown in origin and function, many others appear to take the place of essential reproductive functions, such as translation and protein synthesis. This allows them to assume more control of their host's metabolism and control its resources more optimally.

In this study, the sequence of a giant virus was discovered seemingly infecting a newly discovered microscopic marine predator. The eukaryotic cell feeds on smaller microbes such as bacteria, but strangely, the virus carries genes for several light-harvesting proteins, possibly converting a heterotrophic predator into a partial phototroph.

Journal Paper:
Needham DM, Yoshizawa S, Hosaka T, Poirier C, Choi CJ, Hehenberger E, Irwin NAT, Wilken S, Yung C-M, Bachy C, Kurihara R, Nakajima Y, Kojima K, Kimura-Someya T, Leonard G, Malmstrom RR, Mende DR, Olson DK, Sudo Y, Sudek S, Richards TA, DeLong EF, Keeling PJ, Santoro AE, Shirouzu M, Iwasaki W, Worden AZ. 2019. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci 116:20574–20583.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, January 20, 2020

BacterioFiles 410 - Microbes Modify Muscle Measurement

A laboratory mouse
This episode: Mice that got a microbe transplant from humans with higher physical function performed better in certain ways than mice receiving microbes from humans with lower physical function!

Download Episode (6.7 MB, 9.8 minutes)

Show notes:
Microbe of the episode: Stenotrophomonas maltophila

News item

Takeaways
Our bodies and our microbe communities are closely interconnected, with effects going both ways. Studies had previously shown that making changes to the microbe communities of mice could even affect the physical function and body composition of the mice.

This study aimed at addressing the same question in humans. There were certain consistent differences in microbial communities between elderly people with high ability to function physically, compared with low functioning people. These differences carried over in transplants of microbes from people to mice, and mice receiving microbes from high-functioning humans did better in tests of grip strength than mice receiving microbes from low-functioning people.

Journal Paper:
Fielding RA, Reeves AR, Jasuja R, Liu C, Barrett BB, Lustgarten MS. 2019. Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults. Exp Gerontol 127:110722.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Sunday, January 19, 2020

Interview of me on the podcast Curioscity

Another good podcast you should check out is Curioscity, in which the host, Calvin Yeager, interviews other scientists about various aspects of science, their research, and other aspects of how science gets done!

He recently interviewed me about my experience getting a job as a scientist outside academia, and what that's like, so if you'd like to hear about that, here's the link:

Curioscity 53 - What Is Industry?

Monday, January 13, 2020

BacterioFiles 409 - Marine Methane Mostly Munched

Methanococcus species
By Anne Fjellbirkeland,
from PLoS Biol 2004:e358
CC BY 2.5
This episode: Microbes in low-oxygen zones in the ocean consume significant amounts of methane anaerobically!

Download Episode (5.2 MB, 7.6 minutes)

Show notes:
Microbe of the episode: Mojiang henipavirus

News item

Takeaways
Methane is a much more potent greenhouse gas than carbon dioxide. Fortunately there's not as much of it in the atmosphere, but even smaller amounts can have significant effects on the climate.

One source of methane is low-oxygen zones in the ocean, where certain kinds of archaea make methane as part of their energy metabolism. This study found that other anaerobic microbes in the same areas consume much of this methane, preventing it from reaching the atmosphere.

Journal Paper:
Thamdrup B, Steinsdóttir HGR, Bertagnolli AD, Padilla CC, Patin NV, Garcia‐Robledo E, Bristow LA, Stewart FJ. 2019. Anaerobic methane oxidation is an important sink for methane in the ocean’s largest oxygen minimum zone. Limnol Oceanogr 64:2569–2585.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.